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1 Introduction

For agents close to retirement, a signiÞcant share of wealth is typically tied to some form of res-

idential real estate. Reverse mortgages allow homeowners to tap their home equity and increase

their available income (Mayer and Simons, 1994). Empirically, a low fraction of homeowners

make use of this opportunity, which is in particular puzzling if agents have only moderate

bequest motives.

First, we focus on stylized frameworks where we can derive closed-form solutions. We Þnd

that the decision to enter a reverse mortgage is mainly driven by the di!erential between the

aggregate appreciation of the house price and principal limiting factor (PLF) on the one hand

and the funding costs of a household on the other hand.1 Without borrowing constraints,

reverse mortgages are unattractive and the agent borrows against her housing equity if house

price growth is higher than funding costs. This is independent of how the PLF is structured.

With borrowing constraints, the agent will eventually run out of liquidity and then enter a

reverse mortgage. On the other hand, if the sum of house price growth and PLF growth is

lower than the funding costs, it is optimal to take out a reverse mortgage immediately.2 This

is also true in a market with borrowing constraints.

Second, we study a rich model involving stochastic house and stock prices, stochastic income

a!ected by biometric risks (health and mortality), and Þnancial disasters. For a calibrated

version of the model, we show that the main intuitions carry over. In particular, we can explain

the empirically low rate of home equity conversion mortgages (HECM), short reverse mortgages,

as observed in the US. The main driver behind this result is the consumer-unfriendly pricing of

these contracts. Additionally, the opportunity to move to a smaller house (downsizing) reduces

the demand for reverse mortgages even further.

Third, our paper analyzes the optimal response of households that are confronted with health

shocks or Þnancial disasters. In particular, we focus on the question of how these disasters

a!ect the decision to enter a reverse mortgage. We show that for both types of disasters optimal

consumption drops, but the Þnancial situation of the household is still a!ected di!erently. If

the agent su!ers from an unexpected health shock, she reduces the risky portfolio share and

is more likely to enter a reverse mortgage. On the other hand, if there is a large drop in the

1A detailed explanation of the PLF can be found in Section 3.4.
2To be precise, the PLF appreciation must be exponential. If it is linear, then a more involved stopping rule

arises. SeeProposition 2.2.
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stock market (Þnancial disaster), she keeps the risky portfolio share almost constant by buying

additional shares of stock. Besides, the probability to take out a reverse mortgage is hardly

a!ected. This is because a health shock has a long lasting e!ect on income, whereas a Þnancial

disaster leads to a signiÞcant, but single loss of Þnancial wealth.

In general, unattractive reverse mortgages force the agent to postpone entering such a contract

and to cut down on consumption instead. This e!ect is more pronounced for agents that are

Þnancially constrained, i.e., for poor agents with little savings. Formally, this leads to non-

smooth consumption streams. Prohibitively high costs (equivalent to low principal limiting

factors) might thus call for a redesign of reverse mortgages. In particular for childless agents

without bequest motive, it might be mutually beneÞcial for agents and society to make reverse

mortgages more attractive. This relaxes the Þnancial constraints of agents. In turn, they can

consume more or cover potential health expenses more easily.

Recent literature deals with the decision of individual households to enter a reverse mortgage

contract: Davido! (2015) studies the link between reverse mortgages and put options. He shows

that the put value often exceeds the closing costs of the reverse mortgage contract, making the

low demand puzzling. Davido!, Gerhard, and Post (2017) show that Þnancial literacy could

explain the low demand for reverse mortgages. Low-income and savings-poor households are

more interested in reverse mortgages than their peers. They lack, however, knowledge about

the contract terms. Nakajima and Telyukova (2017) analyze the housing decision of both

renters and homeowners over the second part of their life cycle. In their model, renters are not

allowed to buy houses, but homeowners are allowed to sell their house and rent, stay in the

house, or enter a reverse mortgage. In addition, homeowners face exogenous idiosyncratic move

shocks. This is similar toCampbell and Cocco(2003, 2007, 2015); Chetty, S«andor, and Szeidl

(2017); Flavin and Nakagawa(2008); Hryshko, Luengo-Prado, and S¿rensen(2010); Ngai and

Tenreyro (2014); Stokey (2009); Li and Yao (2007) and Sinai and Souleles(2005). Piazzesi

and Schneider(2009) and Kaplan (2012) model a preference shock. All these papers abstract

from the decision to enter a reverse mortgage.Nakajima and Telyukova (2017) consider four

health states, excellent, good, poor, and dead as well as the impact of these health states on

forced moves to nursing homes. Unlike this paper,Nakajima and TelyukovaÕs Þnancial market

consists of only a risk-free bond. Therefore, the e!ect of Þnancial disasters is not analyzed.

Several papers study the role of housing in the context of dynamic portfolio choice over the

life cycle, but abstract from reverse mortgages:Yao and Zhang(2004) focus on the renting

2
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versus owning decision of households and Þnd that, when households are indi!erent between

renting and housing, the substitution e!ect accounts for lower equity proportions in householdsÕ

net worth and the diversiÞcation e!ect leads to higher equity proportions in liquid portfolios.

Liquidity constraints govern the decision to rent or own a house.Yogo (2016) focuses on the

retirement phase of the life cycle in a model with health expenditures implying that agents can

invest into their own health. His model is able to match key asset allocation decisions: the

equity share is low and positively correlated to health, the housing portfolio share is negatively

correlated to health and falls in age, and health expenditures rise in age and are negatively

related to the agentÕs health.

Cocco(2005) shows in a life cycle model that housing investments crowds out stock investments

for younger agents, reducing both their equity participation as well as their equity share. This is

particularly true for low Þnancial net-worth agents.Kraft and Munk (2011) study an analytical

model in which house prices, stock prices, labour income and the interest rate are stochastic.

They are able to explain various empirical Þndings such as the low real estate ownership rates

of younger individuals. An expansion of the model also has meaningful results if the housing

decision cannot be made continuously but rather infrequently. Using a model with a habit

for housing,Kraft, Munk, and Wagner (2017) are also able to match the empirically observed

consumption hump (Thurow, 1969).

In general equilibrium models housing also plays a crucial role.Iacoviello and Pavan(2013)

generate the empirically observable procyclicality of housing investments and households debt.

Piazzesi, Schneider, and Tuzel(2007) show that a model with housing matches empirical puzzles

such as the risk-free rate puzzle, see, e.g.,Mehra and Prescott(1985); Weil (1989); Bansal and

Coleman(1996) or the equity premium puzzle, see, e.g.,Kocherlakota (1996); Mankiw (1986);

Mehra and Prescott(1985); Telmer (1993).

We proceed as follows:Section 2 studies stylized models and provides some intuition on a

householdÕs decision to enter a reverse mortgage. Analytical solutions allow us to explain some

of the major Þndings in our full model. Section 3 presents this model. Section 4 explains

the calibration. Section 5reports the main results. Section 6presents our Þndings when we

additionally allow the owner to move to a smaller house.Section 7concludes.

3
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2 Stylized Setups with Analytical Solutions

In this section, we study two stylized versions of our model that allow for analytical solutions.

We show that the decision to enter a reverse mortgage is mainly driven by the di!erential

between the aggregate appreciation of the house price and principal limiting factor on the one

hand and the funding costs of a household on the other hand. We analyze the trade-o!s that

arise if the cost structure is linear or there are borrowing constraints.

2.1 No Borrowing Constraints

First, we assume that the agent can borrow without any constraints. We assume that she owns

a house with current price!H t where! is the number of square meters occupied andHt is the

time-t price per square meter. The price dynamics are given by

dHt = HtµH dt. (2.1)

We deliberately assume that the house price dynamics are deterministic since only this assump-

tion allows for a closed-form solution. This solution reveals several main insights that carry

over to a setting with stochastic house price dynamics studied in later sections. Similarly, we

abstract from mortality risk and bequest motives, which is also relaxed later on. The time

horizon of the agent is denoted byT.

Until time T, she can invest in a risk-free asset with returnr or a risky Þnancial asset, e.g.,

stock index, with return dynamics

dSt

St
= µ dt + " dWt ,

whereW is a Brownian motion. She can consume a perishable consumption good at the rate

ct . Her preferences are

E

! " T

0
e! !t u(ct , ! ) dt

#

with

u(c, ! ) =
1

1 ! #

$
c" ! 1! "

%1! #
.

At any time, she can enter into a reverse mortgage and realize an age-dependent fraction

4
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$ (t) " 1 of her home equity. There are thus age-dependent proportional costs given by 1! $ (t).

Denoting her time-t wealth by X t , her wealth dynamics are given by

dX t = X t [(r + %t&) dt + %t" dWt ] ! ct dt,

where&= µ ! r is the excess return of the risky asset and%is the proportion invested in this

asset. If the agent decides to enter a reverse mortgage, then her wealth changes in the following

way

X $ = X $! + !H $$ (' ).

The agent chooses an optimal consumption ratec" and an optimal portfolio policy %" . After

the reverse mortgage is entered, the Hamilton-Jacobi-Bellman (HJB) equation for the value

function of the agent reads

max
c,%

&

Vt + xrVx + %&xVx + 0.5%2" 2x2Vxx ! cVx ! (V + u(c, ! )
'

= 0 (2.2)

with terminal condition V(T, x) = 0. We denote the value function before the reverse mortgage

is entered by (V. This value function satisÞes the same HJB equation as (2.2), but the boundary

condition is
(V(', x ) = V(', x + !H $$ (' )) ,

where' is the (unknown) optimal time point to enter a reverse mortgage. In the following, we

set

) = 1 + * (# ! 1).

In both cases, the Þrst-order condition for the optimal consumption rate is given by

c" =
$
*! &! #G! 1

x

%1
! ,

whereG # { V, (V} . One can show that the following separation solves the HJB equation for(V :

(V(t, x ) =
1

1 ! )
(x + g(t))1! &f (t)&

with

g(t) = !H te(µH ! r )( $! t )$ (' ).

Notice that g is the present value of the reverse-mortgage payo!for a given stopping time' .

5
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Analogously, the separation forV reads

V(t, x ) =
1

1 ! )
x1! &f (t)&,

where in both casesf is given by

f (t) = *
1
! !

! ! "
!

1 ! e! ör (T ! t )

ör

with

ör =
) ! 1

)

)

r + 0.5
1
)

* &
"

+ 2
,

+
(
)

.

Therefore, the optimal consumption rates before and after stopping read

(c" =
$
*! &! #

%1
! (x + g)f ! 1, c" =

$
*! &! #

%1
! xf ! 1,

and the corresponding optimal risky portfolio shares are given by

(%" =
1
)

&
" 2

x + g
x

, %" =
1
)

&
" 2

.

Now, from optimal stopping theory we know that the agent does not stop at timet if

(V(t, x ) > V (t, x + !H t$ (t)) ,

but stops if
(V(t, x ) " V(t, x + !H t$ (t)) .

This is equivalent to

g(t) > !H t$ (t) or g(t) " !H t$ (t),

respectively. In other words, the agent does not stop if the present value of entering into

the reverse mortgage in the future,g(t), is larger than the payo! from taking out the reverse

mortgage immediately,!H t$ (t). Therefore, she will not stop at timet if there is a later time

point ' > t such that

!H te(µH ! r )( $! t )$ (' ) > !H t$ (t) $% e(µH ! r )( $! t )$ (' ) > $ (t). (2.3)

6
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We start with exponential costs of the form:

$ (t) = $max e! µ# (T ! t ) = $min eµ# t , (2.4)

where $max ($min ) is the maximal (minimal) principal limiting factor and µ' is its rate of

appreciation. A principal limiting factor of the form (2.4) is very tractable since its dynamics

d$ (t) = $ (t)µ' dt, $ 0 = $min ,

are of the same form as the house price dynamics (2.1). Substituting ( 2.4) into the stopping

rule (2.3) yields

e(µH + µ# ! r )( $! t ) > 1

and thus we arrive at the following result:

Theorem 2.1 (Taking Out a Reverse Mortgage with Exponential Costs). Assume that there are

no borrowing constraints and that the principal limiting factor is given by(2.4). If µH + µ' > r ,

the agent keeps the house as long as possible and leverages up against her home equity via an

ordinary loan. If µH + µ' < r , the agent prefers to enter into a reverse mortgage immediately.

In particular, there is no interior solution to the problem.

If the house appreciates more than the funding costs,µH > r , she will delay her decision until

the end. This is true independent of the cost structure and carries over to the case of linear

costs (see Proposition2.2 below).

Without transaction costs to enter a reverse mortgage the agent stops immediately if the house

prices appreciates less than the return on the funding costs,µH < r . This is because the agent

can directly realize the house value and thus the return di!erential. Age-dependent transaction

costs for reverse mortgages delay her decision to enter into a reverse mortgage and can revert

her decision ifµH < r , but µH + µ' > r . In this case, the stopping decision of the agent is

driven by the net liquidation value -H of the house price (after transaction costs) deÞned by

-Ht = Ht$ (t) = -H0e(µH + µ# )t (2.5)

where we set-H0 = !H 0$min . Notice that in frictionless markets, the decision of how to tap

home equity is thus independent from her consumption decision, which is in line with the

classical separation results as inFisher (1930). In the next section, we study a situation were

7
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the agent faces borrowing constraints. Then the agent cannot (fully) use her house as collateral

and the decision to enter into a reverse mortgage is not independent from her consumption

choice.

We emphasize that the expected excess return is irrelevant for the stopping decision since it is

not part of the stopping rule and our stylized model abstracts from randomness in house prices.

Therefore, only funding costs matter. Later we will consider a more sophisticated model where

we relax this assumption.

The decision problem of the agent can also be interpreted from a real-option perspective (see,

e.g., Davido! (2015)): In this sense, the agent holds a put option to enter into a reverse

mortgage. If there are no frictions, then the value of the put is independent of the agentÕs

preferences. Otherwise, preferences become relevant. For instance, forµH + µ' > r leverage

constraints might force her to take out a reverse mortgage earlier depending on her consumption

preferences. We analyze this aspect in detail later on.

Finally, consider a situation where the dynamics of the principal limiting factor are not expo-

nential as assumed in (2.4), but linear3

$ (t) = $min + bt, t & 0, (2.6)

where$min and b are positive constants andt = 0 corresponds to the earliest possible date to

enter a reverse mortgage.

Proposition 2.2 (Taking Out a Reverse Mortgage with Linear Costs). Assume that there are

no borrowing constraints and that the principal limiting factor is captured by(2.6). If µH > r ,

she keeps the house as long as possible and leverages up against her home equity via an ordinary

loan. This is independent of the cost structure, i.e., independent of$min and b. If µH < r , then

there is an interior solution to enter into the reverse mortgage if

' " =
1

r ! µH
!

$min

b

is in (0, T). For ' " " 0, the agent stops immediately, whereas for' " & T the agent keeps the

house as long as possible (as forµH > r ).

A proof can be found in AppendixA.1.
3Notice that linear costs Þt real-life costs better than exponential costs, but the di!erence is moderate.

Additional results are available upon request.
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In contrast to the case with exponential transaction costs, there are now cases where an interior

solution materializes. This shows that the shape of the cost function is decisive for whether an

interior solution might be optimal. We illustrate this issue in the following section.

2.2 Numerical Results

To generate some numerical results for this model, we use the parameter values reported in

Table 1 for the house price dynamics, the stock dynamics, and the utility speciÞcation. In

addition, we calibrate the cost function$ (t) according to the principal limiting factors provided

by the U.S. Department of Housing and Urban Development.4 Neglecting closing fees for this

analysis and assuming an interest of 4.83% on the home equity conversion mortgage,5 the cost

function is well approximated by (2.6) setting $min = 0.391 andb = 0.0095. Figure 1 depicts

the principal limiting factors for all age-interest combinations.

First, Figure 2 depicts the agentÕs optimal age to enter a reverse mortgage. The negative

relation between the prevailing risk-free interest rate and the decision when to enter a reverse

mortgage contract reßects the opportunity cost of liquidation. In the current setup, the time

horizon of the agent is an age of 85 years. Since there is no bequest motive, it is optimal

to enter a reverse mortgage during the agentÕs lifetime. However, the timing depends on the

calibration of the model. For real risk-free interest rates below 1.95% the agent will wait until

the last period to enter a HECM. This is in line with Proposition 2.2. However, even if the

agent waits until the last period, there is always a discount since the principal limiting factor

is strictly below unity. On the other hand, for real interest rates greater than 2.84% the agent

will enter a reverse mortgage immediately, i.e., at the age of 62.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

To get an understanding for the e!ect of the optimal time point to enter a reverse mortgage,

Figure 3 depicts the agentÕs optimal policies for an real interest rate ofr = { 1%, 4%} . First,

4https://www.hud.gov/sites/documents/august2017plftables.xls
5The average HECM Þxed rate from January 2016 through August 2019 in the US is equal to 4.83%.
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since the agent has no bequest motive, in both cases terminal wealth must be equal to zero.

However, forr = 1% the agent chooses to wait until the latest possible date to enter a reverse

mortgage. She thus depletes her wealth until an age of 72 and then borrows against her home

equity to Þnance her consumption. On the other hand, for a risk-free rate of 4.0%, the agent

immediately enters a HECM thus shifting up her wealth proÞle. She then depletes her wealth

until the end to Þnance consumption.

Next, turning to the risky portfolio share, the agent who immediately enters a reverse mortgage

has a constant risky portfolio share as inMerton (1969). Conversely, for an interest rate of

4.0%, the agent Þrst levers up her portfolio share and then gradually reduces her stock exposure

until an age of 76 years. Finally, a higher interest rate reduces the agentÕs total consumption.

This is because a high interest rate diminishes the present value of the reverse mortgage as

the liquidation value of the house is decreased. In our example, the agent is endowed with

a Þnancial wealth of $80, 000 and the initial house price is $200, 000 (= $2, 500/m2 ' 80m2).

Housing wealth thus exceeds Þnancial wealth. Hence, the agent consumes less in the setting

with high interest rates.

2.3 Borrowing Constraints

We now turn to a situation where the agent faces borrowing constraints and cannot pledge the

house as collateral. For simplicity, we abstract from stock investments. The agent thus faces

the following optimization problem

(V(0) = max
c,$

" T

0
e! !t u(ct , ! ) dt. (2.7)

The wealth dynamics are given by

dX t = X t r dt ! ct dt and X $ = X $! + -H$, 0 " ' " T,

where -H is deÞned in (2.5), i.e., we assume that transaction costs are exponential. The agentÕs

wealth at time-' is

X $ = er$
*

X 0 !
" $

0
e! rt ct dt

+

. (2.8)

If the agentÕs borrowing costs are higher thanµH + µ' , she stops immediately at time 0. This

is a general result that is also true in this setting. Therefore, in this section we are concerned

10
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with non-trivial cases where the agent stops after time 0. In this case, we decompose (2.7) as

follows

(V(0) = max
c,$

. " $

0
e! !t u(ct , ! ) dt +

" T

$
e! !t u(ct , ! ) dt

/

= max
$

&

max
c

&" $

0
e! !t u(ct , ! ) dt

'

+ V(', X $ + -H$)
'

,

whereV is the agentÕs indirect utility function after stopping. For CRRA utility,

u(c, ! ) =
1

1 ! #

$
c" ! 1! "

%1! #
or u(c, ! ) = * ln(c) + (1 ! * ) ln( ! ), (2.9)

there are explicit solutions forV. Due to the borrowing constraints, we must have

X t & 0 for all t # [0, ' ]. (2.10)

For CRRA utility, the Inada condition, uc(0) = ( , is satisÞed and it is thus su"cient to impose

X $ & 0, (2.11)

which implies (2.10). Therefore, we must consider the Lagrange function

L (c, ', + ) =
" $

0
e! !t u(ct , ! ) dt + V(', X c

$ + -H$) + +X c
$, (2.12)

where+ & 0 is the Lagrangian multiplier associated with the constraint (2.11) and we also have

(2.8). Substituting ( 2.8) into ( 2.12) yields the following Þrst-order conditions:

d
d,

L (c + , 0c, ', + )

1
1
1
1
1
( =0

= 0, (2.13)

-
-'

L (c, ', + ) = 0 , (2.14)

+X c
$ = 0, (2.15)

where, in the optimality condition (2.13) for c, we have, # R and 0c is a test function. Notice

that c is a real-valued function over [0, ' ], i.e., this condition is given by a Gateaux deriva-

tive.6 The derivative (2.14) with respect to ' is referred to as transversality condition. The

6SeeLuenberger (1969) for more details.
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last condition (2.15) is a complementary slackness condition. For the log-utility case, we can

characterize the solution explicitly:

Theorem 2.3 (Taking Out a Reverse Mortgage with Borrowing Constraints). Assume the

agent has a utility functional given by (2.7) with log-utility as in ( 2.9). If µH + µ' < r , then

borrowing constraints do not matter and the agent stops immediately. IfµH + µ' > r , then

there is at most one interior solution' # (0, T) characterized by the following condition

ln

)
X 0

(g(' )

,

= ln

) -H$

g(' )

,

! g(' )[µH + µ' ! r ], (2.16)

whereg and (g are given by (A.7) and (A.13).

A proof can be found in AppendixA.2.7

From (2.16) it becomes clear that the size of the excess growth of the house including transaction

costs,µH + µ' ! r , and the ratio between initial wealth and potential liquidation value of the

house,X 0/ -H$, are decisive for the location of the stopping time. Besides, one can show that8

X 0

(g(' )
=

-H$

g(' ) + +e!$ -H$

and
-H$

g(' )

are the consumption rates right before and after stopping. Here+ is the the Lagrangian

multiplier associated with the condition (2.11) and thus measures how Þnancially constrained

the agent is. Without binding constraints they are identical, but the Þrst one is smaller if the

borrowing constraint is active. Therefore, the agent initially accepts less consumption to beneÞt

from the higher appreciation of the liquidation value of the house relative to the borrowing costs

r . This leads to a less smooth consumption stream compared to a frictionless market.

2.4 Numerical Results

Figure 4 depicts the reverse mortgage decision and the optimal consumption of an agent in

the setting of Section 2.3. We set all parameter values as inTable 1. First, Panel (a) depicts

7Showing that our Þrst-order conditions are su"cient is beyond the scope of the paper. However, our theorem
is still very useful. In general, one must compare the agentÕs utility for stopping at time 0 or at timeT or at !
if ! # (0, T). The optimal stopping time is then the one leading to the highest utility. It is easy to check this
numerically.

8See (A.15) and (A.16) in Appendix A.2.
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the optimal stopping time ' of the agent. We vary the interest rater and receive a pattern

that is similar to Figure 2. For low interest rates (r < µ H + µ' ), the agent enters a reverse

mortgage contract late in life to beneÞt from the house price appreciation (including both the

price and PLF increase). If the interest rate is higher, the agent takes out a reverse mortgage

earlier. For r > µ H + µ' = 0.4% + 1.7% = 2.1% the agent stops immediately and enters the

reverse mortgage at timet = 0. Panel (b) depicts consumption. It can be seen that borrowing

constraints lead to a non-smooth consumption stream with an upward jump at the optimal

stopping time of 75.6 years.

[Figure 4 about here.]

3 Full Model

This section presents a richer framework and describes the optimization problem of the agent.

In particular, we now allow for stochastic house prices, biometric risks (mortality and sickness),

and Þnancial disasters.9

3.1 Financial Assets

The agent can invest into two Þnancial assets: a risky stock (index)S and the risk-free money

market accountB with interest r . Besides her Þnancial wealth, she also owns! housing units.

While the housing units measured in square meters are Þxed, the price per housing unit,H ,

that determines the value of her house varies stochastically over time. The expected returns,

µS and µH , and the volatilities, " S and " H , of stock and house are assumed to be constant.

Furthermore, the stock dynamics involve a downward jump with relative jump size 1! .. The

asset dynamics are given by

dBt = Bt r dt,

dSt = St

2
µS dt + " S dW S

t ! (1 ! .)dN S
3

,

dHt = Ht

2
µH dt + " H dW H

t

3
.

9Empirically, life insurance holdings are low for older age groups, e.g.,Hong and R«õos-Rull(2012). Therefore,
we decided to abstract from an insurance decision. Results for a model with short-time life insurance are available
upon request. Our main results are virtually una!ected by this assumption. The same comment applies for
critical illness insurance.
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The processesW S = ( W S
t ) and W H = ( W H

t ) are standard Brownian motions with d)W S, WH *t =

/ dt where / is the instantaneous correlation. Besides,N S = ( N S
t ) is a Poisson process with

constant intensity 0.

3.2 Biometric Risk

The agent faces uncertain health and death shocks. Her health status is captured by the process

Zt which can take on three values:

Zt =

4
555556

555557

1 alive and healthy att,

2 alive and unhealthy att,

3 dead att.

[Figure 5 about here.]

The setup of the agentÕs biometric risk followsHambel, Kraft, Schendel, and Ste!ensen(2017)

and is depicted inFigure 5. First, the agentÕs uncertain time of death is deÞned by' D =

min{ T, 0' D } where 0' D is the Þrst jump time of the counting processN D = ( N D
t ) with age- and

state-dependent intensity1(t, Z t ). Second, the Þrst jump of the counting processN H = ( N H
t )

with age-dependent intensity2(t) triggers a health shock of the agent, i.e., the processZ jumps

into state 2. The jump time is denoted by' H . The agent can at most be hit by one health

shock, which is assumed to be irreversible.

3.3 Labor Income

The agent receives age- and health-dependent labor income net of medical expenses denoted

by Y. Income growth is age-dependent and we assume that the agent retires at the age of 65

years. A health shock increases the agentÕs health expenses and therefore reduces her labor

income to p1,2. In other words, the relative income loss isp1,2 ! 1. Finally, the agentÕs labor

income jumps to zero upon death. This gives the following income dynamics

dYt = Yt!

2
µY

t (Zt ) dt + 1{ Zt =1 } (p1,2 ! 1) dN H
t ! dN D

t

3
. (3.1)
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3.4 Home Equity Conversion Mortgages

From an age of 62 years onwards, the agent can enter a home equity conversion mortgage

(HECM), short reverse mortgage, which enables the agent to realize the value of her home

equity. We implement the o"cial U.S. Department of Housing and Urban Development (HUD)

guidelines, i.e., we take into account the initial principal limit of $679,650; an initial mortgage

insurance premium of 2%, capped at $13,593; the 2% loan origination fee on the Þrst $200,000

and the 1% loan origination fee on the amount exceeding $200,000, with a minimum of $2,000

and a maximum of $6,000; the HECM insurance of 0.5%; and the principal limiting factors

(PLF) 10. The most common withdrawal schemes of HECMs are Þxed monthly amounts or

lines of credit. For computational tractability, we assume that the agent receives a lump-sum

payment upon entering a reverse mortgage. The agent can only enter a HECM once and cannot

change her house size thereafter.

3.5 Wealth Dynamics

The agent chooses her consumption and the fraction invested in stocks%. In addition, at each

point in time, the agent decides whether to enter a HECM or not. Financial wealth follows

dX t = X t

2
(r + ( µS ! r )%t ) dt + %t" S dW S

t ! %t (1 ! .)dN S
3

+ ( Yt ! ct ) dt, t += ', (3.2)

andX $ = X $! +HECM( ', H $, ! ) for t = ' . For a house price ofH$, the function HECM(', H $, ! )

provides the lump-sum payment from the reverse mortgage if the agent decides to enter the

contract at time ' .

3.6 Preferences

Following Kraft and Munk (2011); Kraft, Munk, and Wagner (2017); Nakajima and Telyukova

(2017); Li and Yao (2007); Yao and Zhang(2004), among others, the agent has Cobb-Douglas

preferences for consumption and housing. Her utility index is given by

U(t, x, y, z, h) = Et,x,y,z,h

8

9
" $D

t
e! ! (s! t )

$
c"

s ((1{ $>s } + 1{ $# s} 3)! )1! "
%1! #

1 ! #
ds (3.3)

10https://www.hud.gov/sites/dfiles/SFH/documents/plf_on_after_10_2_17.xls
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+ 1{ $>$D } 4e! ! ($D ! t ) (X $D + 5h $D ! )1! #

1 ! #
+ 1{ $# $D } 4e! ! ($D ! t ) X 1! #

$D

1 ! #

:

; .

In this setting, # is the coe"cient of relative risk aversion,( > 0 is the time-preference rate,4 is

the bequest weight, and* is the utility weight on consumption. The constant3 # (0, 1] models

the disutility from entering a reverse mortgage contract. In essence,3 captures the e!ect that

an agent might derive less utility from the same units of housing if the house formerly belongs

to the bank. The second and third summand of (3.3) measure the bequest motive of the agent.

If the agent has not entered a HECM (' > ' D ), she bequeathes her Þnancial and her housing

wealth. The constant 5 # (0, 1] captures potential transaction costs from selling the house.

Otherwise, the agent has already entered a HECM and thus bequeathes her Þnancial wealth

only.

3.7 Decision Problem of the Agent

The agent chooses consumption, the risky portfolio share, and when to enter a HECM to

maximize her expected utility from intermediate consumption, housing, and terminal wealth.

Additionally, we impose the following constraints:

(C.1) perishable consumption is strictly positivect > 0,

(C.2) the fraction invested in the risky asset is between zero and one, 0" %t " 1,

(C.3) Þnancial wealth is positive,X t & 0.

The value function

J (t, x, y, z, h) = max
c,%,$

U(t, x, y, z, h) (3.4)

subject to (3.2) and the constraints(C.1)-(C.3) characterizes the solution of the problem.

4 Calibration

[Table 1 about here.]
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4.1 Financial Assets

We calibrate the moments of the stock and bond to S&P500 and T-Bill returns. We use

the database provided by Aswath Damodaran on his website to download historical nominal

S&P500 returns and 3-month T-Bill returns over the time-period 1970-2017.11 To convert

nominal to real returns, we adjust these returns by the FRED Consumer Price Index for All

Urban Consumers: All Items (CPI).12 We calibrate the house price dynamics to the Shiller

house price index.13 We convert these nominal returns to real returns via the CPI. Finally, we

calibrate the jump component of the stock to match the expected loss inWachter (2013) by

setting 0 = 7% and . = 0.88.

4.2 Biometric Risk

[Figure 6 about here.]

To calibrate health shocks, we use US cancer data from 2017 provided by the Center of Disease

Control (CDC). The dataset is called United States Cancer Statistics (USCS).14 It contains all

cancer incidents in the USA for 5-year age cohorts up to an age of 85 and older. Note that the

corresponding incidence rate is based on both sexes and adjusted by the Census P25Ð1130. As

depicted in Figure6, we Þt the data to a Gaussian function of the form

2(t) = ae! ( min( t, 85) ! b
c )

2

(4.1)

wheret is the age of the agent anda, b and c are constants. Since the dataset does not report

cancer incidents for ages above 85 separately, we assume that cancer rates are constant for

agents older than 85. A non-linear least squares Þt results ina = 0.02169 (0.02126, 0.02212), b=

78.72 (77.72, 79.72), and c = 24.62 (23.42, 25.83) with 95% conÞdence intervals in parentheses.

We use a extended Gompertz mortality model to capture the mortality risk of the healthy

agent. To increase the hazard rate of death for sick agents, we add a constant termk1 and an

11http://www.stern.nyu.edu/ ÷adamodar/pc/datasets/histretSP.xls
12FRED identiÞer: CPIAUCSL
13SeeShiller (2016) and http://www.econ.yale.edu/ ÷shiller/data/Fig3-1.xls
14https://gis.cdc.gov/Cancer/USCS/DataViz.html
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age-dependent termk2 if the agent becomes unhealthy:

1(t, Z ) =

4
555556

555557

1
b exp

$
t! m

b

%
for Zt = 1,

1
b exp

$
t! m

b

%
+ k1 + k2t for Zt = 2,

0 for Zt = 3,

(4.2)

where m and b are constants andt is the age of the agent. We calibrate the parametersm,

b, k1, and k2 to US data from the CDCÕs National Vital Statisitcs System. We minimize the

squared deviation between simulated death rates and empirical death rates. The simulated

death rates are generated by using (4.2) and taking the given health-shock intensity (4.1) into

account. Figure7 depicts the Þtted mortality distribution.

[Figure 7 about here.]

4.3 Labor Income

Following Cocco, Gomes, and Maenhout(2005); Munk and S¿rensen(2010); Hambel, Kraft,

Schendel, and Ste!ensen(2017), the income drift µY (t) is time-dependent and given by

µY (t) =

4
555556

555557

a + 2bt + 3ct2 for t < T R,

! (1 ! P) for TR " t " TR + 1,

0 for t > T R + 1.

(4.3)

We assume that the agent has a high school degree and set the parameters according to the

calibration of Munk and S¿rensen(2010). SpeciÞcally, we assume that the agentÕs income is

$35,000 at the age of 50 if she is healthy. She retires at the age ofTR = 65. The replacement

ratio P is 0.68212. The parameters for Equation (4.3) can be found inTable 1.
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4.4 Initial Financial Wealth

For an age of 50 years, we set the agentÕs Þnancial wealth to$55,000. This is slightly higher

than the value reported in the 2016 Survey of Consumer Finances (SCF)15, which is due to the

fact that the agent in our model has a higher risky portfolio share. Since we assume that the

agent has already paid o! her house, we only consider total Þnancial assets (FIN) net of total

debt (DEBT) to calibrate Þnancial wealth.

4.5 Preferences

We use preference parameters that are within the usual range of the vast life-cycle consumption-

portfolio choice literature. We choose a relative risk-aversion coe"cient of# = 6, a time-

preference rate of( = 0.07, and a bequest weight of4 = 1. We calibrate the utility weight on

consumption to the Consumer Expenditures 2018 data provided by the US Bureau of Labor

Statistics, which results in* = 0.70. Finally, we set the disutility parameter to3 = 0.60, which

results in HECM take-on rates that are similar to those observed in the data.

5 Benchmark Results

This section provides the results to our full model described in Section3. The calibration of

the parameters is explained in Section4. We simulate 100, 000 paths over the life cycle of the

agent and report the medians of the variables of interest.

5.1 Life-Cycle Simulation

[Figure 8 about here.]

Figure 8 depicts the median Þnancial wealth (Panel (a)), consumption (Panel (b)), risky port-

folio share (Panel (c)), and income (Panel (d)). Median Þnancial wealth increases from the

start of our simulation at an age of 50 years until her retirement at the age of 65 years. After-

wards, the agent depletes her Þnancial wealth to Þnance consumption. Consumption exhibits

a consumption hump at the age of 52 years, which is in line withThurow (1969). From an

15SeeBricker, Dettling, Henriques, Hsu, Jacobs, Moore, Pack, Sabelhaus, Thompson, and Windle(2017).

19

Electronic copy available at: https://ssrn.com/abstract=3720645



age of 52 onwards, consumption decreases and almost ßattens out at the age of 80. The risky

portfolio share%reveals a decreasing pattern with a steep decline just before the retirement age.

This pattern is partly driven by the size of the agentÕs labor income. It is steadily decreasing

until an age of 65 where there is a signiÞcant drop. In retirement the income stream is slightly

decreasing since the agent can still su!er from a health shock.

[Figure 9 about here.]

Figure 9 depicts the results of 100,000 simulated paths where the biometric risk is calibrated

according toSection 4. The Þrst panel shows the distribution of the health shocks peaking at an

age of around 70 years. The second panel shows the corresponding histogram of death shocks.

The maximum is reached at an age of about 83 years. The last panel depicts the distribution of

the agentÕs health state. The dark area corresponds to the healthy state (Z = 1), the medium

gray area represents the unhealthy state (Z = 2), and the light area stands for the state of

death (Z = 3). These distributions are the basis for the biometric risk underlying the decisions

of the agent.

[Figure 10 about here.]

Figure 10 depicts the distribution of the stopping time to enter a HECM. In our model, the

probability of taking out a reverse mortgage is about 8%. Similarly toNakajima and Telyukova

(2017), we Þnd that it is more likely to take out a reverse mortgage at a later point in retirement.

There are two reasons for this: First, the high appreciation rate of the principal limiting factor

gives incentives to postpone the decision. This is in line with our Þnding for the stylized model

in Section2.3. Second, it is more likely that the agent has already su!ered from a health shock

at an older age meaning that her disposable income is lower. Entering a reverse mortgage helps

to mitigate this e!ect.

5.2 Impact of Health Shocks

[Figure 11 about here.]

[Figure 12 about here.]
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This subsection studies the implications of su!ering from a health shock. To perform a com-

parative static analysis, we assume that a health shock hits the agent unexpectedly at an age

of 70 years if she is still healthy. This allows us to compare the e!ects of such a shock path by

path to the situation where the health shock occurs later or never. Notice that the agent is not

aware of this and Ð until the age of 70 years Ð thus chooses the same policies as in the baseline

scenario.

Upon su!ering the health shock, her disposable income jumps downwards due to increased

health expenditures. This leads to a permanent reduction of her available income. The reduc-

tion of income has a direct e!ect on human wealth, which drops in response to the permanent

income loss. The present value of this loss is about$49, 500. The gray lines inFigure 11depict

the values from our baseline results, whereas the black lines show the values of the agent suf-

fering a health shock at an age of 70. Panel (b) ofFigure 11shows that consumption decreases

less after the shock such that the two lines converge at the end of the life time.

In Panel (c) ofFigure 11, a similar pattern arises for the optimal portfolio share, which also drops

since the agent sells part of her stock holdings. The portfolio strategy is however ßatter after a

health shock and thus the holdings are almost identical from the age of 80 years onwards. Since

the agent has sizable Þnancial wealth before the shock, she can compensate the lower income by

using her savings, both in stocks and bonds. Additionally, the probability of entering a reverse

mortgage increases from 8% to about 10%. This can be seen inFigure 12 where the medium

gray area depicts the incremental increase of this probability

5.3 Impact of Financial Disasters

[Figure 13 about here.]

[Figure 14 about here.]

This subsection discusses the e!ect of Þnancial disasters on the decisions of the agent. To

isolate the e!ect of such a loss, we assume that a disaster occurs unexpectedly at the age of 70

years. This is equivalent to the assumptions about health shock risk inSection 5.2. The main

di!erence to the previous subsection is that the Þnancial shock is a one-time event, whereas

the health shock a!ects the agentÕs income stream permanently (until death).
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Financial wealth declines sharply after the disaster, but the slope after the shock is less steep

resulting in converging Þnancial wealth levels compared to a case without a Þnancial disaster

at an age of 70 years. To a lesser extent this is also true for consumption.

In contrast to a health shock, a Þnancial disaster immediately reduces the agentÕs Þnancial

wealth, but leaves her income unchanged. We Þnd that she immediately cuts down on con-

sumption, but keeps her risky portfolio share almost constant. This is optimal because a drop

in Þnancial wealth has an indirect e!ect on the value of human wealth. More precisely, lower

Þnancial wealth makes an income stream less valuable if there are borrowing constraints.16 No-

tice that the stock demand with income is essentially the product of the stock demand without

income and the following leverage factor

1 +
Human Wealth

Financial Wealth
.

Whereas for a health shock only the numerator (human wealth) of the ratio decreases, a Þnan-

cial disaster shrinks both human wealth and Þnancial wealth and thus the e!ect on the optimal

portfolio share is less pronounced and in our calibration almost negligible. It is however impor-

tant to recognize that a constant portfolio share does not imply inactivity, but actually means

that the agent buys additional shares of stock.

Turning to the decision to enter a HECM, the agent is more likely to enter such a contract

after the shock has occurred. This can be seen inFigure 14. In comparison to health shocks,

however, Þnancial disasters have a smaller e!ect on the take-on rate of reverse mortgages. This

is again due to the temporary nature of the Þnancial disaster.

6 House Downsizing

We now assume that the houseowner has also the opportunity to move to a smaller house and

thereby realize some of her housing wealth. Downsizing is therefore an alternative to entering

a reverse mortgage. Additionally, we allow the agent to take out a reverse mortgage after

downsizing.

Upon downsizing, the agent incurs transaction costs denoted byf . These costs involve bro-

16See, e.g.,Bick, Kraft, and Munk (2013).
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kerage fees, notarial fees, and other expenses along the process of buying, selling, and moving

between houses. The proceeds net of transaction costs are given by

&(! $H , ! $H ! , h$H ) = h$H [! $H ! ! ! $H (1 + f )] , (6.1)

where ' H denotes the stopping time of downsizing (compared to' , which denotes the reverse

mortgage stopping time). Furthermore,! $H ! and ! $H are the square meters occupied before

and after downsizing. Financial wealth therefore follows

dX t = X t

2
(r + ( µS ! r )%t ) dt + %t" S dW S

t + %t(. ! 1)dN S
3

+ ( Yt ! ct ) dt, t += ', ' H , (6.2)

and X $ = X $! + HECM( ', H $, ! ) for t = ' and X $H = X $H ! + &(! $H , ! $H ! , h$H ) for t = ' H .

While the median life-cycle patterns of Þnancial wealth, consumption, income, and the risky

portfolio share hardly change,17 agents enter reverse mortgage contracts to a lesser extent and

rather split their housing liquidation between reverse mortgages and downsizing. Panel (a) of

Figure 15depicts the reverse mortgage decision, whereas Panel (b) shows the downsizing deci-

sion. The dark areas represent the probability distribution of not entering a reverse mortgage

contract or not moving to a smaller house. Contrary, the light area represents the distribution

of entering a reverse mortgage contract or changing the house size. The option to downsize

crowds out the option to enter a reverse mortgage. However, the aggregated distribution of

downsizing or entering a reverse mortgage is of the same order of magnitude as the distribution

of entering a reverse mortgage in our baseline case depicted inFigure 10. To summarize, down-

sizing appears to be more attractive than entering a reverse mortgage. Therefore, the option

to downsize is able to explain even lower probabilities to take out a reverse mortgage.

[Figure 15 about here.]

7 Conclusion

This paper studies the decision of a household to enter a reverse mortgage. We Þnd that the

empirically low rates can be explained by an unattractive design of the contract. Prohibitively

high costs prevent households from choosing a reverse mortgage at an early age in retirement.

17The Þgures are available upon request.
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They rather cut down on consumption and postpone the decision. From a policy perspective,

one might want to relax the Þnancial constraints of households by redesigning reverse mortgages

and o!ering more favorable conditions. In particular, the structure of the principal limiting

factors over the age groups is crucial in this context.
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A Proofs

A.1 Proposition 2.2

The agent maximizes the present valueg of the house. We thus calculate the Þrst and second

derivative of

!H te(µH ! r )( $! t )$ (' )

with respect to ' where we sett = 0 without loss of generality. The Þrst derivative is

!H 0e(µH ! r )$
2
($min + b' )(µH ! r ) + b

3
.

There is one extremum at' " as deÞned in the proposition. The second derivative is

!H 0e(µH ! r )$
2
($min + b' )(µH ! r )2 + 2b(µH ! r )

3
.

Substituting ' " in the second derivative yields

b(µH ! r ).

Therefore, ' " is a local minimum for µH > r . Since the Þrst derivative is always positive

for µH > r , the agents delays stopping as long as possible. If howeverµH < r , then ' " is a

global maximum. For ' " # (0, T), this is the optimal stopping time. Otherwise, we get corner

solutions.
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A.2 Theorem 2.3

First,

d
d,

L (c + , 0c, ', + )

1
1
1
1
1
( =0

=
" $

0
e! !t uc(ct , ! )0ct dt +

<
Vx(', X c+ ( 0c

$ + -H$) + +
= dX c+ ( 0c

$

d,

1
1
1
1
1
1
( =0

,

where
dX c+ ( 0c

$

d,

1
1
1
1
1
1
( =0

= ! er$
" $

0
e! rt 0ct dt

and thus " $

0

<
e! !t uc(ct , ! ) !

2
Vx(', X c

$ + -H$) + +
3

e($! t )r
=

0ct dt = 0

for any test function 0c. By the fundamental lemma of the calculus of variations,18 we thus

conclude

uc(ct , ! ) =
2
Vx(', X c

$ + -H$) + +
3

e($! t )r + !t for all t " '. (A.1)

The transversality condition (2.14) for ' is

e! !$ u(c$, ! ) + Vt (', X c
$ + -H$) + Vx(', X c

$ + -H$)
- -H$

-'
+

2
Vx(', X c

$ + -H$) + +
3 -X c

$

-'
= 0,

where
- -H$

-'
= -H$(µH + µ' ) and

-X c
$

-'
= rX c

$ ! c$.

Applying (A.1) for t = ' yields

e! !$ u(c$, ! )+ Vt (', X c
$ + -H$)+ Vx(', X c

$ + -H$) -H$(µH + µ' )+ e! !$ uc(c$, ! )
$
rX c

$ ! c$

%
= 0. (A.2)

We apply the transformation

V(t, x ) = G(t, x )e! !t

implying

Vt (t, x ) = Gt (t, x )e! !t ! G(t, x )(e! !t , Vx(t, x ) = Gx(t, x )e! !t .

18See, e.g.,Luenberger (1969), pp. 180f.

28

Electronic copy available at: https://ssrn.com/abstract=3720645



Therefore, (A.2) becomes

u(c$, ! )+ Gt (', X c
$+ -H$)! (G(', X c

$+ -H$)+ Gx(', X c
$+ -H$) -H$(µH + µ' )+ uc(c$, ! )

$
rX c

$ ! c$

%
= 0

(A.3)

and optimal consumption is given by

uc(ct , ! ) =
2
Gx(', X c

$ + -H$) + +e!$
3

e(r ! ! )( $! t ) for all t " '. (A.4)

Since ucc < 0, the consumption pathc up to ' is thus increasing forr > ( and decreasing

otherwise.

Now, we specify the utility function to beu(c, ! ) = * ln(c)+ (1 ! * ) ln( ! ). This utility function

is equivalent tou(c) = ln( c), since* and (1! * ) ln( ! ) are positive constants. Consequently, we

assume without loss of generality that we are in the case withu(c) = ln( c). Therefore, (A.3)

becomes

ln(c$) + Gt (', X c
$ + -H$) ! (G(', X c

$ + -H$) + Gx(', X c
$ + -H$) -H$(µH + µ' ) +

rX $

c$
! 1 = 0 (A.5)

From (A.4), we get

c$ =
1

Gx(', X c
$ + -H$) + +e!$

and thus
X c

$

c$
=

$
Gx(', X c

$ + -H$) + +e!$
%

X c
$ = Gx(', X c

$ + -H$)X c
$

because of complementary slackness. Consequently, (A.5) becomes

! ln
$
Gx(', X c

$ + -H$) + +e!$
%

+ Gt(', X c
$ + -H$) ! (G(', X c

$ + -H$)

+ Gx(', X c
$ + -H$)

$
-H$(µH + µ' ) + rX c

$

%
! 1 = 0

One can show that after stopping,t # [', T ], we have19

V(t, x ) = G(t, x )e! !t = [ g(t) ln( x) + h(t)] e! !t , (A.6)

19Proofs are available upon request.
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where the real-valued functionsg and h are given by20

g(t) =
1
(

$
1 ! e! ! (T ! t )

%
, (A.7)

h(t) =
1
(

$
g(t) ! (r ! ( )(T ! t)e! ! (T ! t )

%
! g(t) ln g(t)

and satisfy the following ordinary di!erential equations

gt = (g ! 1, (A.8)

ht = (h ! rg + ln( g) + 1 . (A.9)

Now, using (A.6) and simplifying yields

! ln

)
g(' )

X c
$ + -H$

+ +e!$

,

+ ln

)
g(' )

X c
$ + -H$

,

+ g(' )

! -H$

X c
$ + -H$

(µH + µ' ) +
X c

$

X c
$ + -H$

r ! r

#

= 0.

(A.10)

We are interested in Þnding a solution to (A.10) satisfying ' # (0, T). Obviously, + = 0 is only

consistent with (A.10) if µH + µ' = r , which is a trivial case. Otherwise, this equation has no

solution ' # (0, T). Therefore, the constraint is binding, i.e.+ > 0, and thusX $ = 0. Equation

(A.10) simpliÞes to

ln

)
g(' )
-H$

,

! ln

)
g(' )
-H$

+ +e!$

,

+ g(' ) [µH + µ' ! r ] = 0. (A.11)

The di!erence of the logarithms is negative for+ > 0. Consequently, a necessary condition to

obtain an interior solution ' # (0, T) is µH + µ' > r . To determine the Lagrangian multiplier

+, we use the constraintX $ = 0 and remark that

ct =
1

g(' )/ -H$ + +e!$
e! (r ! ! )( $! t ) , (A.12)

where the ratio does not depend ont. Now,

0 = X $ = er$
*

X 0 !
" $

0
e! rt ct dt

+

= er$

)

X 0 !
1

g(' )/ -H$ + +e!$
(g(' )

,

,

20Notice that x ln x goes to zero ifx goes to zero. Therefore,h is well-deÞned.
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where

(g(' ) =
1
(

$
1 ! e! !$

%
= g(T ! ' ) (A.13)

and, consequently,

g(' )
-H$

+ +e!$ =
(g(' )
X 0

=% + =

)
(g(' )
X 0

!
g(' )
-H$

,

e! !$ (A.14)

The transversality condition (A.11) can thus be rewritten as (2.16), which can be solved for

' numerically. Notice that this solution is only admissible if the corresponding Lagrangian

multiplier given by (A.14) is strictly positive.

Finally, we also get a relation between consumption before and after stopping. By (A.12),

consumption just before stopping is

lim
t$ $

ct =
1

g(' )/ -H$ + +e!$

( A.14 )
=

X 0

(g(' )
. (A.15)

On the other hand, using (A.6) one can also show that optimal consumption fort # [', T ] is

given by

ct =
X $

g(' )
e(r ! ! )( t ! $) .

Therefore,

lim
t% $

ct =
X $

g(' )
=

1

g(' )/ -H$

. (A.16)

This is becauseX $ = X $! + -H$ and X $! = 0, since the agent spends all her Þnancial wealth

until ' and enters into the reverse mortgage at' .

B Hamilton-Jacobi-Bellman Equation

To solve the problem, we split it into a stochastic control part, to solve for the optimal policies

%and c, and an impulse control part to solve for the optimal stopping times' and ' H . After

stopping, the problem of the agent reduces to an ordinary stochastic control problem

V(t, x, y, z, h) = max
c,%

U(t, x, y, z, h).
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The Hamilton-Jacobi-Bellman equation to this problem reads

(V = max
%,c

4
6

7
(c" (3!)1! " )1! #

1 ! #
+ Vt + Vxx [r + %(µ ! r )] + Vx(y ! c) +

1
2

Vxx x2%2" 2
S

+ VhhµH +
1
2

Vhh h2" 2
H + Vxh xh" S" H /%+ Vyyµy(t, z)

+ 1{ z=1 } 1(t, 1)

!

4
x1! #

1 ! #
! V(t, x, y, 1, h)

#

+ 1{ z=2 } 1(t, 2)

!

4
x1! #

1 ! #
! V(t, x, y, 2, h)

#

+ 1{ z=1 } 2(t)
2
V(t, x, p1,2y, 2, h)) ! V(t, x, y, 1, h)

3
+ 0 [V(t, x + x%(. ! 1), y, z, h) ! V(t, x, y, z, h)]

>
?

@
,

with terminal condition V(t, x, y, 3, h) = 4x1! "

1! # . Here subscripts denote partial derivatives.

Before stopping, we deÞne the di!erential operator

L (V =
(c" ! 1! " )1! #

1 ! #
+ (Vt + (Vxx [r + %(µ ! r )] + (Vx(y ! c) +

1
2

(Vxx x2%2" 2
S

+ (VhhµH +
1
2

(Vhh h2" 2
H + (Vxh xh" S" H /%+ (Vyyµy(t, z)

+ 1{ z=1 } 1(t, 1)

!

4
(x + 5h! )1! #

1 ! #
! (V(t, x, y, 1, h)

#

+ 1{ z=2 } 1(t, 2)

!

4
(x + 5h! )1! #

1 ! #
! (V(t, x, y, 2, h)

#

+ 1{ z=1 } 2(t)
2

(V(t, x, p1,2y, 2, h)) ! (V(t, x, y, 1, h)
3

+ 0
2

(V(t, x + x%(. ! 1), y, z, h) ! (V(t, x, y, z, h)
3

where (V(t, x, y, z, h) denotes the continuation value with terminal condition (V(t, x, y, 3, h) =

4(x+ )h* )1! "

1! # . The optimization problem yields

max
&

V(t, x + HECM( t, H t , ! ), y, z, h) ! (V(t, x, y, z, h), max
%,c

{L V ! ( (V}
'

= 0

for our baseline scenario. For our analysis inSection 6this maximization is given by

max
&

V
$
t, x + HECM( t, H t , ! ) + &(! $H , ! $H ! ), y, z, h

%
! (V(t, x, y, z, h), max

%,c
{L V ! ( (V}

'

= 0
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Financial Market

µS Stock drift Real S&P500 return from 1971-2018
adjusted by CPI for all urban consumers (FRED Code CPIAUCSL)

0.06
" S Stock volatility 0.185
r Bond drift US T-Bill rate (1971-2018) adjusted by CPI as above 0.01
. Stock recovery value Matching Þrst moment ofWachter (2013)

Matching Þrst moment ofWachter (2013)
0.88

0 Jump intensity 0.07

Preference Parameters

( Time preference rate Model assumption 0.07
# Relative risk aversion Model assumption 6
4 Bequest weight Model assumption 1
3 Disutility from not owning the house Model assumption 0.60
* Utility weight on consumption US Bureau of Labor Statistics: Consumer Expenditures 2018 0.70

Initial Þnancial wealth Model assumption 55000

Mortality Risk

m x-axis displacement Reducing sum of squared deviations between model
and US mortality data taken from
the CDCÕs National Vital Statisitcs System

90.38
b Steepness parameter 5.9579
k1 Constant impact of health shock 0.0369
k2 Age-dependent impact of health shock 0.0062

Health Shock Risk

a Scaling parameter CDC: United Sates Cancer Statistics
rate of new cancers in 2017
based on age-adjusted 2000 U.S. standard population (19 age groups - Census P25-1130)

0.02169
b x-axis displacement 58.72
c Steepness parameter 24.62

Income

a Education-dependent wage increase

Munk and S¿rensen(2010)

0.1682
b Education- and age-dependent wage increase parameter ! 0.00323
c Education- and age-dependent wage increase parameter 0.00002
P Replacement ratio 0.68212
TR Retirement age 65
p1,2(t < T R) Income level after a health shock while working 0.8
p1,2(t & TR) Income level after a health shock during retirement 0.8

Initial income 35000
Housing

µH House drift Shiller US Home Prices 1890- PresentShiller (2016) 0.004
" H House volatility http://www.econ.yale.edu/ ÷shiller/data/Fig3-1.xls 0.12
/ Correlation house prices and stock Correlation between real house price index and real S&P500 series 0.12
$min Linear cost model: intercept Fit plf factor provided by the U.S. Department of Housing and Urban Development 0.391
b Linear cost model: slope coe"cient Fit plf factor provided by the U.S. Department of Housing and Urban Development 0.0095
µ' Exponential cost model: rate of appreciation Fit plf factor provided by the U.S. Department of Housing and Urban Development 0.017

Initial house price per square meter https://www.zillow.com/home-values/ 1561
5 Transaction cost of selling the house Model assumption 0.90

Table 1: Benchmark Calibration. This table reports the calibration of our model which is
discussed inSection 4.

33

Electronic copy available at: https://ssrn.com/abstract=3720645



0
100

0.2

95
90

0.4

19%

P
rin

ci
pa

l l
im

iti
ng

 fa
ct

or
 (

P
LF

)

17%85 15%

0.6

Age

80 13%

Interest rate on HECM

11%75

0.8

9%70 7%5%65 3%62

Figure 1: Principal Limiting Factors. The Þgure depicts the principal limiting factors for all age-
interest combinations according to the U.S. Department of Housing and Urban Development (HUD).
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Figure 2: Optimal HECM Contract Age. This Þgure depicts the agentÕs optimal age to enter a
reverse mortgage depending on the prevailing risk-free interest rate. We use the stopping rule given
in Proposition 2.2. The calibration of the relevant parameters can be found inTable 1.
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Figure 3: Optimal Consumption, Risky Portfolio Share, and Financial Wealth. The Þgure
depicts the agentÕs optimal consumption (in$), her risky portfolio share (in %), and the optimal
Þnancial wealth levels (in $) for two di!erent values of r . The solid line ( ) depicts the agentÕs
optimal policies and wealth levels for a risk-free interest rate ofr = 1% and the dashed line ( )
depicts these policies and her wealth levels forr = 4%, respectively. The calibration of the relevant
parameters can be found inTable 1.
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(a) Optimal Stopping Time
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(b) Consumption

Figure 4: Results with Borrowing Constraints . Panel (a) depicts the agentÕs optimal age to
enter a reverse mortgage depending on the prevailing risk-free interest rate. We use the stopping rule
given in Theorem 2.3 which assumes that the transaction costs are exponential. The calibration of
the relevant parameters can be found inTable 1. Panel (b) depicts the agentÕs optimal consumption
based if the interest rate isr = 1%. In this case, the optimal stopping time is ! = 75.6 years.
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Figure 5: Structure of Health Status. This Þgure depicts the three di!erent states capturing the
health status of the agent.
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Figure 6: Health Shock Calibration. The Þgure depicts data on gender averaged 5-year cancer
incidence rates and our Þtted curve" . The data ( ) are gender-averaged values from the US Cancer
Statistics provided by the Center of Disease Control. The parameters of our Þtted curve" ( ) are
given in Table 1.
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Figure 7: Death Shock Distribution. This Þgure depicts the number of yearly deaths for a
normalized population of unit size. The mortality data ( ) is a gender average over US mortality
data. Our simulated values ( ) are the averages from 600,000 death shock simulations using the
biometric risk calibration as reported in Table 1.
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(b) Consumption
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(c) Portfolio
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(d) Income
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Figure 8: Key Variables Over the Life Cycle . Graphs (a) through (d) depict the medians
of Þnancial wealth, consumption, stock holdings, and income over the life cycle based on 100, 000
simulations. We use the parameters reported inTable 1.
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Figure 9: Simulated Biometric Risk Distribution. The graphs show the results of 100,000
paths where the biometric risk is calibrated as described inSection 4. The left-hand panel depicts the
distribution of the health shock. The middle panel shows the distribution of the death shock. The
right-hand panel depicts the distribution of the agentÕs health state. The dark area () corresponds
to the healthy state (Z = 1), the medium gray area ( ) represents the unhealthy state (Z = 2), and
the light area ( ) stands for the state of death (Z = 3).
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Figure 10: Reverse Mortgage Decision. This Þgure depicts the distribution of the stopping time
to enter a reverse mortgage. The dark gray area measures the probability that the agent has not
entered the reverse mortgage ( ), whereas the light area is the probability that the agent has already
entered the reverse mortgage ( ). The Þgure is based on 100, 000 simulations with parameters as in
Table 1.
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(b) Consumption
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(c) Portfolio
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(d) Income
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Figure 11: Key Variables Over the Life Cycle with a Health Shock at the Age of 70.
Graphs (a) through (d) depict the medians of Þnancial wealth, consumption, stock holdings, and
income over the life cycle based on 100, 000 simulations. We use the parameters reported inTable 1.
The dark lines ( ) depict the median values if the agent su!ers an unexpected health shock at the
age of 70 years. The gray lines ( ) depict the median values of our baseline model where there is
not necessarily a health shock at this age.
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Figure 12: Reverse Mortgage Decision with Health Shocks. This Þgure depicts the distribu-
tion of the stopping time to enter a reverse mortgage. The dark gray area measures the probability
that the agent has not entered the reverse mortgage (), whereas the light area is the probability that
the agent has already entered the reverse mortgage in the baseline case (). This area is identical to
the one in Figure 10. In contrast to Figure 10, we assume that there is an unexpected health shock at
the age of 70 years. This generates additional demand for a reverse mortgage and leads to an increase
in the probability to enter such a contract. This increase is depicted by the medium gray area ( ).
The Þgure is based on 100, 000 simulations with parameters as inTable 1.
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(b) Consumption
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(c) Portfolio
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(d) Income
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Figure 13: Key Variables Over the Life Cycle with a Financial Disaster at the Age of
70. Graphs (a) through (d) depict the medians of Þnancial wealth, consumption, stock holdings, and
income over the life cycle based on 100, 000 simulations. We use the parameters reported inTable 1.
The dark lines ( ) depict the median values if an unexpected Þnancial disaster occurs at the age
of 70 years. The gray lines ( ) depict the median values of our baseline model where there is not
necessarily a Þnancial disaster at this age.
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Figure 14: Reverse Mortgage Decision with Financial Disaster. This Þgure depicts the
distribution of the stopping time to enter a reverse mortgage. The dark gray area measures the
probability that the agent has not entered the reverse mortgage ( ), whereas the light area is the
probability that the agent has already entered the reverse mortgage in the baseline case (). This
area is identical to the one inFigure 10. In contrast to Figure 10, we assume that there is an unexpected
Þnancial disaster at the age of 70 years. This generates very little additional demand for a reverse
mortgage and leads to a negligible increase in the probability to enter such a contract. This slight
increase is depicted by the medium gray area (). The Þgure is based on 100, 000 simulations with
parameters as inTable 1.

47

Electronic copy available at: https://ssrn.com/abstract=3720645



(a) Reverse Mortgage Decision
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(b) Housing Decision
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Figure 15: Reverse Mortgage Decision with Downsizing. Panel (a) depicts the distribution
of the stopping time to enter a reverse mortgage. The dark gray area measures the probability that
the agent has not entered the reverse mortgage (), whereas the light area is the probability that the
agent has already entered the reverse mortgage (). Panel (b) depicts the distribution of the stopping
time to downsize. The dark gray area measures the probability that the agent has not reduced her
size of the house ( ), whereas the light area is the probability that the agent has already moved to a
smaller house ( ). Notice that it is allowed to Þrst downsize and then enter a reverse mortgage, but
the converse is legally not possible. The Þgure is based on 100, 000 simulations with parameters as in
Table 1.
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